Pro-regenerative Extracellular Matrix Hydrogel Prevents and Mitigates Pathological Alterations of Pelvic Muscles Following Birth Injury

Author:

Duran Pamela,Sesillo Francesca Boscolo,Burnett Lindsey,Menefee Shawn A.,Cook Mark,Zazueta-Damian Gisselle,Dzieciatkowska Monika,Do Emmy,French Saya,Shah Manali M.,Sanvictores Clyde,Hansen Kirk C.,Shtrahman Matthew,Christman Karen L.,Alperin Marianna

Abstract

AbstractPelvic floor disorders, which include pelvic organ prolapse, and urinary and fecal incontinence, affect millions of women globally and represent a major public health concern. Pelvic floor muscle (PFM) dysfunction has been identified as one of the leading risk factors for the development of these morbid conditions. Even though childbirth, specifically vaginal delivery, has been long recognized as the most important potentially modifiable risk factor for PFM injury, the precise mechanisms of PFM dysfunction following childbirth remain elusive. In this study we demonstrate that PFMs undergo atrophy and severe fibrosis in parous women with symptomatic pelvic organ prolapse compared to age-matched nulliparous cadaveric donors without history of pelvic floor disorders. These pathological alterations are recapitulated in the pre-clinical rat model of simulated birth injury. The transcriptional signature of PFMs post-injury demonstrates a sustained inflammatory response, impairment in muscle anabolism, and persistent expression of extracellular matrix (ECM) remodeling genes. Next, we evaluated the administration of acellular injectable skeletal muscle extracellular matrix hydrogel for the prevention and mitigation of these pathological alterations. Treatment of PFMs with the biomaterial either at the time of birth injury or 4 weeks post-injury reduced muscle atrophy and mitigated fibrotic degeneration. By evaluating gene expression, we demonstrate that these changes are mainly driven by the hydrogel-induced modulation of the immune response and intramuscular fibrosis, as well as enhancement of the endogenous myogenesis. This work furthers our understanding of PFM birth injury and demonstrates proof-of-concept for a new pragmatic pro-regenerative biomaterial approach for treating injured PFMs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3