Synergistic epistasis of the deleterious effects of transposable elements

Author:

Lee Yuh Chwen G.ORCID

Abstract

AbstractThe replicative nature and generally deleterious effects of transposable elements (TEs) give rise to an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles and, accordingly, an underdispersed distribution for the number of deleterious mutations among individuals. We investigated this population genetic signal in an African Drosophila melanogaster population and found evidence for synergistic epistasis among TE insertions, especially those expected to have large fitness impacts. Curiously, even though ectopic recombination has long been predicted to generate nonlinear fitness decline with increased TE copy number, TEs predicted to suffer higher rates of ectopic recombination are not more likely to be underdispersed. On the other hand, underdispersed TE families are more likely to show signatures of deleterious epigenetic effects and stronger ping-pong signals of piRNA amplification, a hypothesized source from which synergism of TE-mediated epigenetic effects arises. Our findings set the stage for investigating the importance of epistatic interactions in the evolutionary dynamics of TEs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3