Robust Segmentation of Cellular Ultrastructure on Sparsely Labeled 3D Electron Microscopy Images using Deep Learning

Author:

Machireddy Archana,Thibault Guillaume,Loftis Kevin G.,Stoltz Kevin,Bueno Cecilia E.,Smith Hannah R.,Riesterer Jessica L.,Gray Joe W.,Song Xubo

Abstract

SummaryA deeper understanding of the cellular and subcellular organization of tumor cells and their interactions with the tumor microenvironment will shed light on how cancer evolves and guide effective therapy choices. Electron microscopy (EM) images can provide detailed view of the cellular ultrastructure and are being generated at an ever-increasing rate. However, the bottleneck in their analysis is the delineation of the cellular structures to enable interpretable rendering. We have mitigated this limitation by using deep learning, specifically, the ResUNet architecture, to segment cells and subcellular ultrastructure. Our initial prototype focuses on segmenting nuclei and nucleoli in 3D FIB-SEM images of tumor biopsies obtained from patients with metastatic breast and pancreatic cancers. Trained with sparse manual labels, our method results in accurate segmentation of nuclei and nucleoli with best Dice score of 0.99 and 0.98 respectively. This method can be extended to other cellular structures, enabling deeper analysis of inter- and intracellular state and interactions.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16) (pp. 265–283).

2. Baba, A. I. , & Câtoi, C. (2007). Tumor cell morphology. In Comparative Oncology. The Publishing House of the Romanian Academy.

3. Tumor microenvironment complexity and therapeutic implications at a glance;Cell Communication and Signaling,2020

4. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters;IEEE transactions on geoscience and remote sensing,1995

5. Bazzichetto, C. , Conciatori, F. , Falcone, I. , Cognetti, F. , Milella, M. , & Ciuffreda, L. (2019). Advances in tumor-stroma interactions: emerging role of cytokine network in colorectal and pancreatic cancer. Journal of oncology, 2019.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3