Molecular Systems Predict Equilibrium Distributions of Phenotype Diversity Available for Selection

Author:

Valderrama-Gómez Miguel A.ORCID,Savageau Michael A.

Abstract

AbstractTwo long standing challenges in theoretical population genetics and evolution are predicting the distribution of phenotype diversity generated by mutation and available for selection and determining the interaction of mutation, selection, and drift to characterize evolutionary equilibria and dynamics. More fundamental for enabling such predictions is the current inability to causally link population genetic parameters, selection and mutation, to the underlying molecular parameters, kinetic and thermodynamic. Such predictions would also have implications for understanding cryptic genetic variation and the role of phenotypic robustness.Here we provide a new theoretical framework for addressing these challenges. It is built on Systems Design Space methods that relate system phenotypes to genetically-determined parameters and environmentally-determined variables. These methods, based on the foundation of biochemical kinetics and the deconstruction of complex systems into rigorously defined biochemical phenotypes, provide several innovations that automate (1) enumeration of the phenotypic repertoire without knowledge of kinetic parameter values, (2) representation of phenotypic regions and their relationships in a System Design Space, and (3) prediction of values for kinetic parameters, concentrations, fluxes and global tolerances for each phenotype.We now show that these methods also automate prediction of phenotype-specific mutation rate constants and equilibrium distributions of phenotype diversity in populations undergoing steady-state exponential growth. We introduce this theoretical framework in the context of a case study involving a small molecular system, a primordial circadian clock, compare and contrast this framework with other approaches in theoretical population genetics, and discuss experimental challenges for testing predictions.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3