Abstract
AbstractUbiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme involved in multiple membrane trafficking pathways. The enzyme activity is inhibited by binding to 14-3-3 proteins, and mutations of the 14-3-3 binding motif in USP8 are related to Cushing’s disease. However, the molecular basis of USP8 enzyme activity regulation remains unclear. Here, we identified amino acids 645–684 of USP8 as an autoinhibitory region, which our pull-down and single-molecule FRET assay results suggested interacts with the catalytic USP domain. In silico modelling indicated that the region forms a WW-like domain structure, plugs the catalytic cleft, and narrows the entrance to the ubiquitin-binding pocket. Furthermore, 14-3-3 was found to inhibit USP8 enzyme activity partly by enhancing the interaction between the WW-like and USP domains. These findings provide the molecular basis of USP8 autoinhibition via the WW-like domain. Moreover, they suggest that the release of autoinhibition may underlie Cushing’s disease caused by USP8 mutations.
Publisher
Cold Spring Harbor Laboratory