Multi-omics characterization of mesenchymal stem/stromal cells for the identification of putative critical quality attributes

Author:

Maughon Ty S.,Shen Xunan,Huang Danning,Michael Adeola O Adebayo,Shockey William A.,Andrews Seth H.,McRae Jon M.,Platt Manu O,Fernández Facundo M.,Edison Arthur S.,Stice Steven L.,Marklein Ross A.ORCID

Abstract

AbstractBackgroundMesenchymal stromal cells (MSCs) have shown great promise in the field of regenerative medicine as many studies have shown that MSCs possess immunomodulatory function. Despite this promise, no MSC therapies have been granted licensure from the FDA. This lack of successful clinical translation is due in part to MSC heterogeneity and a lack of critical quality attributes (CQAs). While MSC Indoleamine 2,3-dioxygnease (IDO) activity has been shown to correlate with MSC function, multiple CQAs may be needed to better predict MSC function.MethodsThree MSC lines (two bone marrow, one iPSC) were expanded to three passages. At the time of harvest for each passage, cell pellets were collected for nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography mass spectrometry (UPLC-MS), and media was collected for cytokine profiling. Harvested cells were also cryopreserved for assessing function using T cell proliferation and IDO activity assays. Linear regression was performed on functional and multiomics data to reduce the number of important features, and partial least squares regression (PLSR) was used to obtain putative CQAs based on variable importance in projection (VIP) scores.ResultsSignificant functional heterogeneity (in terms of T cell suppression and IDO activity) was observed between the three MSC lines, as well as donor-dependent differences based on passage. Omics characterization revealed distinct differences between cell lines using principal component analysis (PCA). Cell lines separated along principal component 1 based on tissue source (bone marrow vs. iPSC-derived) for NMR, MS, and cytokine profiles. PLSR modeling of important features predicts MSC functional capacity with NMR (R2=0.86), MS (R2=0.83), cytokines (R2=0.70), and a combination of all features (R2=0.88).DiscussionThe work described here provides a platform for identifying putative CQAs for predicting MSC functional capacity using PLSR modeling that could be used as release criteria and guide future manufacturing strategies for MSCs and other cell therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3