Divergent sex differences in functional brain connectivity networks in excessively drinking C57BL/6J mice

Author:

Bloch Solal,Rinker Jennifer A.,Smith Alex C.W.,Shiromani Priyattam J.,Wheeler Damian G.,Azevedo Ricardo,Gandhi Sunil,Hoffman Michaela,Mulholland Patrick J.

Abstract

AbstractIndividuals with alcohol use disorder continue to drink in excess despite the health and societal consequences, and the rate of problematic drinking and alcohol-related harms is increased in women. Clinical imaging studies report widespread adaptations in brain structure after chronic, heavy drinking, and alcohol-related cues enhance brain reactivity in reward-related regions. In rodents, alcohol drinking induces expression of the immediate early gene c-Fos, which can be a marker of cellular activity, across multiple brain regions. Recent evidence also suggests that abstinence from chronic intermittent alcohol exposure can produce mesoscale changes in c-Fos expression. However, there is a substantial gap in our understanding of how excessive drinking affects functional connectivity networks to influence alcohol-seeking behaviors. For this study, male and female C57BL/6J mice were given access to either water or a choice between water and ethanol in the intermittent access drinking model for 4 weeks. After a short-access drinking session, whole brains from high alcohol drinking male and female mice and water drinking controls were then subjected to c-Fos immunolabeling, iDISCO+ clearing, light sheet imaging, and whole-brain c-Fos mapping. Correlation matrices were then generated and graph theoretical statistical approaches were used to determine changes in functional connectivity across sex and drinking condition. We observed robust sex differences in the network of c-Fos+ cells in water drinking mice, and excessive alcohol drinking produce divergent and robust changes in functional network connectivity in male and female mice. In addition, these analyses identified novel hub regions in excessively drinking mice that were unique for each sex. In conclusion, the whole-brain c-Fos mapping analysis identified sex difference in functional network connectivity and unique and understudied regions that may play a critical role in controlling excessive ethanol drinking in male and female mice.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3