LNetReduce: tool for reducing linear dynamic networks with separated time scales

Author:

Buffard MarionORCID,Desoeuvres Aurélien,Naldi AurélienORCID,Requilé Clément,Zinovyev AndreiORCID,Radulescu OvidiuORCID

Abstract

AbstractWe introduce LNetReduce, a tool that simplifies linear dynamic networks. Dynamic networks are represented as digraphs labeled by integer timescale orders. Such models describe deterministic or stochastic monomolecular chemical reaction networks, but also random walks on weighted protein-protein interaction networks, spreading of infectious diseases and opinion in social networks, communication in computer networks. The reduced network is obtained by graph and label rewriting rules and reproduces the full network dynamics with good approximation at all time scales. The tool is implemented in Python with a graphical user interface. We discuss applications of LNetReduce to network design and to the study of the fundamental relation between time scales and topology in complex dynamic networks.Availabilitythe code and application examples are available at https://github.com/oradules/LNetReduce.

Publisher

Cold Spring Harbor Laboratory

Reference7 articles.

1. Quantitative Proteomics Reveals a Dynamic Interactome and Phase-Specific Phosphorylation in the Neurospora Circadian Clock

2. Bokes, P. , Klein, J. , Petrov, T. : Accelerating reactions at the dna can slow down transient gene expression. In: International Conference on Computational Methods in Systems Biology. pp. 44–60. Springer (2020)

3. Dynamic and static limitation in multiscale reaction networks, revisited;Advances in Chemical Engineering,2007

4. Hagberg, A. , Swart, P. , S Chult, D. : Exploring network structure, dynamics, and function using networkx. Tech. rep., Los Alamos National Lab.(LANL), Los Alamos, NM (United States) (2008)

5. Reduction of dynamical bio-chemical reactions networks in computational biology;Frontiers in genetics,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3