A temperate Siphoviridae bacteriophage isolate from Siberian tiger enhances the virulence of Methicillin-resistant Staphylococcus aureus through distinct mechanisms

Author:

Yang Dan,Wang Shuang,Sun Erchao,Chen Yibao,Hua Lin,Zhou RuiORCID,Chen Huanchun,Peng ZhongORCID,Wu BinORCID

Abstract

AbstractThe emergence and worldwide spread of Methicillin-resistant Staphylococcus aureus (MRSA) poses a threat to human health. While bacteriophages are recognized as an effective alternative to treat infections caused by drug resistant pathogens, some bacteriophages in particular the temperate bacteriophage may also influence the virulence of the host bacteria in distinct ways. In this study, we isolated a bacteriophage vB_Saus_PHB21 from an epidermal sample of Siberian tiger (Panthera tigris altaica) using a MRSA strain SA14 as the indicator. Our following laboratory tests and whole genome sequencing analyses revealed that vB_Saus_PHB21 was a temperate bacteriophage belonging to the Siphoviridae family, and this bacteriophage did not contain any virulence genes. However, the integration of PHB21 genome into the host MRSA increased the bacterial capacities of cell adhesion, cell invasion, anti-phagocytosis and biofilm formation. Challenge of the lysogenic strain (SA14+) caused severer mortalities in both Galleria mellonella and mouse models. Mice challenged with SA14+ showed more serious organ lesions and produced higher inflammatory cytokines (IL-8, IFN-γ and TNF-α) compared to those challenged with SA14. In mechanism, we found the integration of PHB21 genome caused the upregulated expression of many genes encoding products involved in bacterial biofilm formation, adherence and invasion to host cells, anti-phagocytosis, and virulence. This study may provide novel knowledge of “bacteria-phage-interactions” in MRSA.IMPORTANCEThe interaction between bacteriophage and bacteria is like a “double-edged sword”: phages can either kill bacteria, or they may contribute to the bacterial fitness and virulence. In general, phages have positive impacts on bacterial fitness and virulence mainly because they carry antimicrobial resistance genes (ARGs) and/or virulence factors encoding genes (VFGs) and they can spread these harmful genes to the host bacteria. However, we found those phages which do not harbor ARGs and/or VFGs may also enhance the bacterial fitness and virulence. In addition, we also found the integration of phage genomes may lead to the upregulated expression of virulence associated genes in bacteria. Our study may provide new insights to redefine the relationship between phage and bacteria, and the results may also remind a cautious way to set phage-therapy for bacterial infections, before which the safety of a phage intends to be used should be fully evaluated.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. O’Neill J. 2016. Tackling Drug-Resistant Infections Globally: Final Reports and Recommendations. The Review on Antimicrobial Resistance.

2. Methicillin-resistant Staphylococcus aureus;Nat Rev Dis Primers,2018

3. Lakhundi S , Zhang K. 2018. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev 31.

4. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research

5. WHO. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3