Microscopic characterization of local strain field in healing tissue in the central third defect of mouse patellar tendon at early-phase of healing

Author:

Maeda Eijiro,Kuronayagi Kaname,Matsumoto Takeo

Abstract

AbstractTendons exhibit a hierarchical collagen structure, wherein higher-level components, such as collagen fibres and fascicles, are elongated, slid, and rotated during macroscopic stretching. These mechanical behaviours of collagen fibres play important roles in stimulating tenocytes, imposing stretching, compression, and shear deformation. It was hypothesised that a lack of local fibre behaviours in healing tendon tissue may result in a limited application of mechanical stimuli to cells within the tissue, leading to incomplete recovery of tissue structure and functions in regenerated tendons. Therefore, the present study aimed to measure the microscopic strain field in the healing tendon tissue. A central third defect was created in the patellar tendon of mice, and the regenerated tissue in the defect was examined by tensile testing, collagen fibre analysis, and local strain measurement using confocal microscopy at 3 and 6 weeks after surgery. Healing tissue at 3 weeks exhibited a significantly lower strength and disorganised collagen fibre structure compared with the normal tendon. These characteristics at 6 weeks remained significantly different from those of the normal tendon. Moreover, the magnitude of local shear strain in the healing tissue under 4% tissue strain was significantly smaller than that in the normal tendon. Differences in the local strain field may be reflected in the cell nuclear shape and possibly the amount of mechanical stimuli applied to the cells during tendon deformation. Accordingly, restoration of a normal local mechanical environment in the healing tissue may be key to a better healing outcome of tendon injury.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3