Genetic analysis of Caenorhabditis elegans pry-1/Axin suppressors identifies genes involved in reproductive structure development, stress response, and aging

Author:

Mallick AvijitORCID,Jhaveri Nikita,Jeon Jihae,Chang Yvonne,Shah Krupali,Hosein Hannah,Gupta Bhagwati P.ORCID

Abstract

ABSTRACTThe Axin family of scaffolding proteins regulates a wide array of developmental and post-developmental processes in eukaryotes. Studies in the nematode, Caenorhabditis elegans, have shown that the Axin homolog, PRY-1, plays essential roles in multiple tissues. To understand the genetic network of pry-1, we focused on a set of genes that are differentially expressed in the pry-1-mutant transcriptome and are linked to reproductive structure development. Eight of the genes (ard-1, rpn-7, cpz-1, his-7, cdk-1, rnr-1, clsp-1, and spp-1), when knocked down by RNA interference, efficiently suppressed the plate-level multivulva phenotype of pry-1 mutants. In every case, other than clsp-1 and spp-1, the ectopic vulval precursor cell (VPC) induction was also inhibited. The suppressor genes are members of known gene families in eukaryotes and perform essential functions. Our genetic interaction experiments revealed that except for clsp-1, the genes participate in one or more pry-1-mediated biological events. While four of them (cpz-1, his-7, cdk-1, and rnr-1) function in VPC induction, stress response, and aging, the other three (spp-1, ard-1, and rpn-7) are specific to one or more of these processes. Further analysis of the genes involved in aging showed that his-7, cdk-1, and rnr-1 also interacted with daf-16/FOXO. The results of genetic epistasis experiments suggested that his-7 functions upstream of daf-16, whereas cdk-1 and rnr-1 act downstream of the pry-1-daf-16 pathway. Altogether, these findings demonstrate the important role of pry-1 suppressors in C. elegans. Given that all of the genes described in this study are conserved, future investigations of their interactions with Axin and their functional specificity promises to uncover the genetic network of Axin under normal and disease states.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3