Predicting Moisture Content During Maize Nixtamalization Using Machine Learning with NIR Spectroscopy

Author:

Burns Michael J.ORCID,Renk Jonathan S.ORCID,Eickholt David P.,Gilbert Amanda M.,Hattery Travis J.,Holmes Mark,Anderson Nickolas,Waters Amanda J.,Kalambur Sathya,Flint-Garcia Sherry A.ORCID,Yandeau-Nelson Marna D.ORCID,Annor George A.ORCID,Hirsch Candice N.ORCID

Abstract

ABSTRACTLack of high throughput phenotyping systems for determining moisture content during the maize nixtamalization cooking process has led to difficulty in breeding for this trait. This study provides a high throughput, quantitative measure of kernel moisture content during nixtamalization based on NIR scanning of uncooked maize kernels. Machine learning was utilized to develop models based on the combination of NIR spectra and moisture content determined from a scaled-down benchtop cook method. A linear support vector machine (SVM) model with a Spearman’s rank correlation coefficient of 0.852 between wet lab and predicted values was developed from 100 diverse temperate genotypes grown in replicate across two environments. This model was applied to NIR data from 501 diverse temperate genotypes grown in replicate in five environments. Analysis of variance revealed environment explained the highest percent of the variation (51.5%), followed by genotype (15.6%) and genotype-by-environment interaction (11.2%). A genome-wide association study identified 26 significant loci across five environments that explained between 5.04% and 16.01% (average = 10.41%). However, genome-wide markers explained 10.54% to 45.99% (average = 31.68%) of the variation, indicating the genetic architecture of this trait is likely complex and controlled by many loci of small effect. This study provides a high-throughput method to evaluate moisture content during nixtamalization that is feasible at the scale of a breeding program and provides important information about the factors contributing to variation of this trait for breeders and food companies to make future strategies to improve this important processing trait.Key MessageMoisture content during nixtamalization can be accurately predicted from NIR spectroscopy when coupled with a support vector machine (SVM) model, is strongly modulated by the environment, and has a complex genetic architecture.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3