Human fetal neural stem cell-derived astrocytes maintain glutamate transport after hypoxic injury in vitro

Author:

Shrivastava Vadanya,Dey Devanjan,Singh Singal Chitra Mohinder,Jaiswal Paritosh,Singh Ankit,Sharma JB,Chattopadhyay Parthaprasad,Palanichamy Jayanth Kumar,Sinha Subrata,Seth Pankaj,Sen Sudip

Abstract

AbstractAstrocytes are the most abundant glial cells that play many critical roles in the central nervous system physiology including the uptake of excess glutamate from the synapse by Excitatory Amino Acid Transporters (EAATs). Among the EAATs, EAAT2 are predominantly functional, astrocyte-specific glutamate transporters in the forebrain. Hypoxic brain injury is a pathological phenomenon seen in various clinical conditions including stroke and neonatal hypoxic ischemic encephalopathy. Glutamate excitotoxicity is an important cause of neuronal cell death in disorders involving hypoxic brain injury. As findings from rodent models cannot always be reliably extrapolated to humans, we aimed to develop a homogenous population of primary human astrocytes to study the effect of hypoxic injury on astrocyte function, especially glutamate uptake. We successfully isolated, established and characterized cultures of human fetal neural stem cells (FNSCs) from aborted fetal brains. FNSCs were differentiated into astrocytes, and characterized by increased expression of the astrocyte markers, glial fibrillary acidic protein (GFAP), EAAT1 and EAAT2. A concomitant decrease in neural stem cell marker, Nestin, was observed. Differentiated astrocytes were exposed to various oxygen concentrations mimicking normoxia (20% and 6%), moderate and severe hypoxia (2% and 0.2% respectively). Interestingly, no change was observed in the expression of glutamate transporter, EAAT2 and glutamate uptake by astrocytes, even after exposure to hypoxia. Our novel model of human FNSC derived astrocytes exposed to hypoxic injury, establishes that astrocytes are able to maintain glutamate uptake even after exposure to severe hypoxia for 48 hours, and thus provides evidence for the neuroprotective role of astrocytes in hypoxic injury.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3