Oxidized alkyl phospholipids stimulate sodium transport in proximal tubules via PPARγ-dependent pathway

Author:

Mizuno Tomohito,Satoh Nobuhiko,Horita Shoko,Tsukada Hiroyuki,Sato Yusuke,Kume Haruki,Nangaku Masaomi,Nakamura MotonobuORCID

Abstract

AbstractThe pleiotropic effects of oxidized phospholipids (oxPLs) have been identified. 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC), an oxPL formed from alkyl phosphatidylcholines, is a potent peroxisome proliferator-activated receptor γ (PPARγ) agonist. Although it has been reported that thiazolidinediones can induce volume expansion by enhancing renal sodium and water retention, the role of azPC, an endogenous PPARγ agonist, in renal transport functions is unknown. In the present study, we investigated the effect of azPC on renal proximal tubule (PT) transport using isolated PTs and kidney cortex tissues. We showed that azPC rapidly stimulated Na+/HCO3- cotransporter 1 activity and luminal Na+/H+ exchanger (NHE) activities in a dose-dependent manner, at submicromolar concentrations, in isolated PTs from rats and humans. Additionally, the stimulatory effects were completely blocked by a specific PPARγ antagonist, 2-chloro-5-nitro-N-phenylbenzamide (GW9662), and a mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor, PD98059. Treatment with an siRNA against PPARγ significantly suppressed the expression of PPARγ mRNA, and it completely blocked the stimulation of both Na+/HCO3- cotransporter 1 and NHE activities by azPC. Moreover, azPC induced extracellular signal-regulated kinase (ERK) phosphorylation in rat and human kidney cortex tissues, and the induced ERK phosphorylation by azPC was completely suppressed by GW9662 and PD98059. These results suggest that azPC stimulates renal PT sodium-coupled bicarbonate transport via the PPARγ/MEK/ERK pathway. The stimulatory effects of azPC on PT transport may be partially involved in the development of volume expansion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3