KIM-1-mediated anti-inflammatory activity is preserved by MUC1 induction in the proximal tubule during ischemia-reperfusion injury

Author:

Al-bataineh Mohammad M.,Kinlough Carol L.,Mi Zaichuan,Jackson Edwin K.,Mutchler Stephanie M.,Emlet David R.,Kellum John A.,Hughey Rebecca P.

Abstract

ABSTRACTCell-associated kidney injury molecule-1 (KIM-1) exerts an anti-inflammatory role following kidney injury by mediating efferocytosis and downregulating the NF-κB pathway. KIM-1 cleavage blunts its anti-inflammatory activities. We reported that Mucin 1 (MUC1) is protective in a mouse model of ischemia-reperfusion injury (IRI). As both KIM-1 and MUC1 are induced in the proximal tubule (PT) during IRI and are ADAM17 substrates, we tested the hypothesis that MUC1 protects KIM-1 activity. Muc1 KO mice and wild-type (WT) littermates were subjected to IRI. KIM-1, MUC1 and ADAM17 levels (and signaling pathways) were assessed by immunoblotting. PT localization was assessed by confocal microscopy and in situ proximity ligation assay. Findings were extended using human kidneys and urine, and KIM-1-mediated efferocytosis assays in mouse PT cultures. In response to tubular injury in mouse and human kidneys, we observed induction and co-expression of KIM-1 and MUC1 in the PT. Compared to WT, Muc1 KO mice had higher urinary KIM-1 and lower kidney KIM-1. KIM-1 was apical in PT of WT kidneys, but predominately with luminal debris in Muc1 KO mice. Efferocytosis was reduced in Muc1 KO PT cultures when compared to WT cells, while inflammation was increased in Muc1 KO kidneys when compared to WT mice. MUC1 was cleaved by ADAM17 in PT cultures, and blocked KIM-1 shedding in MDCK cells. We conclude that KIM-1-mediated efferocytosis and thus anti-inflammatory activity during IRI is preserved in the injured kidney by MUC1 inhibition of KIM-1 shedding.NEW & NOTEWORTHYKIM-1 plays a key role in the recovery of the tubule epithelium during renal IRI by mediating efferocytosis and associated signaling that suppresses inflammation. Excessive cleavage of KIM-1 by ADAM17 provides decoy receptor that aggravates efferocytosis and subsequent signaling. Our data from studies in mice, patients and cultured cells show that MUC1 is also induced during IRI and competes with KIM-1 for cleavage by ADAM17. Consequently, MUC1 protects KIM-1 anti-inflammatory activity in the damaged kidney.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3