SAR11 Cells Rely on Enzyme Multifunctionality to Transport and Metabolize a Range of Polyamine Compounds

Author:

Noell Stephen E.ORCID,Barrell Gregory E.,Suffridge Christopher,Morré Jeff,Gable Kevin P.,Graff Jason R.,VerWey Brian J.,Hellweger Ferdi L.,Giovannoni Stephen J.

Abstract

AbstractIn the ocean surface layer and cell culture, the polyamine transport protein PotD of SAR11 bacteria is often one of the most abundant proteins detected. Polyamines are organic cations produced by all living organisms and are thought to be an important component of dissolved organic matter (DOM) produced in planktonic ecosystems. We hypothesized that SAR11 cells transport and metabolize multiple polyamines and use them as sources of carbon and nitrogen. Metabolic footprinting and fingerprinting were used to measure the uptake of five polyamine compounds (putrescine, cadaverine, agmatine, norspermidine, and spermidine) in two SAR11 strains that represent the majority of SAR11 cells in the surface ocean environment, Ca. Pelagibacter st. HTCC7211 and C. P. ubique st. HTCC1062. Both strains transported all five polyamines and concentrated them to micromolar or millimolar intracellular concentrations. Both strains could use most of the polyamines to meet their nitrogen requirements, but we did not find evidence of use as carbon sources. We propose potABCD transports cadaverine, agmatine, and norspermidine, in addition to its usual substrates of spermidine and putrescine, and that spermidine synthase, speE, is reversible, catalyzing the breakdown of spermidine and norspermidine, in addition to its usual biosynthetic role. These findings provide support for the hypothesis that enzyme multifunctionality enables streamlined cells in planktonic ecosystems to increase the range of DOM compounds they oxidize.ImportanceGenome streamlining in SAR11 bacterioplankton has resulted in a small repertoire of genes, yet paradoxically they consume a substantial fraction of primary production in the oceans. Enzyme multifunctionality is hypothesized to be an adaptation that increases the range of organic compounds oxidized by cells in environments where selection favors genome minimization. We provide experimental support for this hypothesis by demonstrating that SAR11 cells use multiple polyamine compounds and propose that a small set of multifunctional genes catalyze this metabolism. We also report polyamine uptake rates can exceed metabolism, resulting in high intracellular concentrations of these nitrogen-rich compounds and an increase in cell size. Increases in cytoplasmic solute concentrations during transient episodes of high nutrient exposure has previously been observed in SAR11 cells and may be a feature of their strategy for maximizing the share of labile DOM acquired when in competition with other cell types.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3