Capacity to erase gene occlusion is a defining feature distinguishing naive from primed pluripotency

Author:

Foshay Kara M.,Lee Jae Hyun,Zhang Li,Fernandes Croydon J.,Wu Bohou,Gaetz Jedidiah,Baker Samuel W.,Looney Timothy J.,Xiang Andy PengORCID,Fan GuopingORCID,Lahn Bruce T.ORCID

Abstract

SUMMARYPluripotent stem cells can exist in either the naive state representing a developmental blank slate or the downstream primed state poised for differentiation. Currently, known differences between these two states are mostly phenomenological, and none can adequately explain why the two states should differ in developmental priming. Gene occlusion is a mode of epigenetic inactivation that renders genes unresponsive to their cognate transcriptional activators. It plays a crucial role in lineage restriction. Here, we report that a defining feature distinguishing the two pluripotent states lies in the ability of naive but not primed cells to erase occlusion. This “deocclusion” capacity requires Esrrb, a gene expressed only in the naive but not primed state. Notably, Esrrb silencing in the primed state is itself due to occlusion. Collectively, our data argue that the Esrrb-dependent deocclusion capacity in naive cells is key for sustaining naive pluripotency, and the loss of this capacity in the primed state via the occlusion of Esrrb poises cells for differentiation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3