Abstract
AbstractOral squamous cell carcinoma (OSCC) is a subset of head and neck squamous cell carcinoma (HNSCC), the 7th most common cancer worldwide, and accounts for more than 90% of oral malignancies. Early detection of OSCC is essential for effective treatment and reducing the mortality rate. However, the gold standard method of microscopy-based histopathological investigation is often challenging, time-consuming and relies on human expertise. Automated analysis of oral biopsy images can aid the histopathologists in performing a rapid and arguably more accurate diagnosis of OSCC. In this study, we present deep learning (DL) based automated classification of 290 normal and 934 cancerous oral histopathological images published by Tabassum et al (Data in Brief, 2020). We utilized transfer learning approach by adapting three pre-trained DL models to OSCC detection. VGG16, InceptionV3, and Resnet50 were fine-tuned individually and then used in concatenation as feature extractors. The concatenated model outperformed the individual models and achieved 96.66% accuracy (95.16% precision, 98.33% recall, and 95.00% specificity) compared to 89.16% (VGG16), 94.16% (InceptionV3) and 90.83% (ResNet50). These results demonstrate that the concatenated model can effectively replace the use of a single DL architecture.
Publisher
Cold Spring Harbor Laboratory
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献