Histopathological Image Analysis for Oral Squamous Cell Carcinoma classification using concatenated deep learning models

Author:

Amin Ibrar,Zamir Hina,Khan Faisal F.ORCID

Abstract

AbstractOral squamous cell carcinoma (OSCC) is a subset of head and neck squamous cell carcinoma (HNSCC), the 7th most common cancer worldwide, and accounts for more than 90% of oral malignancies. Early detection of OSCC is essential for effective treatment and reducing the mortality rate. However, the gold standard method of microscopy-based histopathological investigation is often challenging, time-consuming and relies on human expertise. Automated analysis of oral biopsy images can aid the histopathologists in performing a rapid and arguably more accurate diagnosis of OSCC. In this study, we present deep learning (DL) based automated classification of 290 normal and 934 cancerous oral histopathological images published by Tabassum et al (Data in Brief, 2020). We utilized transfer learning approach by adapting three pre-trained DL models to OSCC detection. VGG16, InceptionV3, and Resnet50 were fine-tuned individually and then used in concatenation as feature extractors. The concatenated model outperformed the individual models and achieved 96.66% accuracy (95.16% precision, 98.33% recall, and 95.00% specificity) compared to 89.16% (VGG16), 94.16% (InceptionV3) and 90.83% (ResNet50). These results demonstrate that the concatenated model can effectively replace the use of a single DL architecture.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3