Discovery of the fastest myosin, its amino acid sequence, and structural features

Author:

Haraguchi Takeshi,Tamanaha Masanori,Suzuki Kano,Yoshimura Kohei,Imi Takuma,Tominaga Motoki,Sakayama Hidetoshi,Nishiyama Tomoaki,Murata Takeshi,Ito KohjiORCID

Abstract

AbstractCytoplasmic streaming with extremely high velocity (~70 μm s−1) occurs in cells of the characean algae (Chara). Because cytoplasmic streaming is caused by organelle-associated myosin XI sliding along actin filaments, it has been suggested that a myosin XI, which has a velocity of 70 μm s−1, the fastest myosin measured so far, exists in Chara cells. However, the previously cloned Chara corallina myosin XI (CcXI) moved actin filaments at a velocity of around 20 μm s−1, suggesting that an unknown myosin XI with a velocity of 70 μm s−1 may be present in Chara. Recently, the genome sequence of Chara braunii has been published, revealing that this alga has four myosin XI genes. In the work reported in this paper, we cloned these four myosin XIs (CbXI-1, 2, 3, and 4) and measured their velocities. While the velocities of CbXI-3 and CbXI-4 were similar to that of CcXI, the velocities of CbXI-1 and CbXI-2 were estimated to be 73 and 66 μm s−1, respectively, suggesting that CbXI-1 and CbXI-2 are the main contributors to cytoplasmic streaming in Chara cells and showing that CbXI-1 is the fastest myosin yet found. We also report the first atomic structure (2.8 Å resolution) of myosin XI using X-ray crystallography. Based on this crystal structure and the recently published cryo-EM structure of acto-myosin XI at low resolution (4.3 Å), it appears that the actin-binding region contributes to the fast movement of Chara myosin XI. Mutation experiments of actin-binding surface loop 2 support this hypothesis.Significance statementIt has been suggested for more than 50 years that the fastest myosin in the biological world, with a velocity of 70 μm s−1, exists in the alga Chara because cytoplasmic streaming with a velocity of 70 μm s−1 occurs in Chara cells. However, a myosin with that velocity has not yet been identified. In this work, we succeeded in cloning a myosin XI with a velocity of 73 μm s−1, the fastest myosin so far measured. We also successfully crystallized myosin XI for the first time. Structural analyses and mutation experiments suggest that the central regions that define the fast movement of Chara myosin XI are the actin-binding sites.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3