Surface-based tracking for short association fibre tractography

Author:

Shastin DmitriORCID,Genc Sila,Parker Greg D.,Koller Kristin,Tax Chantal M.W.,Evans John,Hamandi Khalid,Gray William P.,Jones Derek K.,Chamberland Maxime

Abstract

AbstractShort association fibres (SAF) of the human brain are estimated to represent over a half of the total white matter volume, and their involvement has been implicated in a range of neurological and psychiatric conditions. This population of fibres, however, remains relatively understudied in the neuroimaging literature. Some of the challenges pertinent to the mapping of SAF include their variable anatomical course and close proximity to the cortical mantle, leading to partial volume effects and exacerbating the influence of the gyral bias. This work considers the choice of scanner, acquisition, voxel size, seeding strategy and filtering techniques to propose a whole-brain, surface-based tractography approach with the aim of providing a method for investigating SAF ≤30-40 mm. The framework is designed to: (1) ensure a greater cortical surface coverage through spreading streamline seeds more uniformly; (2) introduce precise filtering mechanics which are particularly important when dealing with small, morphologically diverse structures; and (3) allow the use of surface-based registration for dataset comparisons which can be superior to volume-based registration in the cortical vicinity. The indexation of surface vertices at each streamline end enables direct interfacing between streamlines and the cortical surface without dependence on the voxel grid. SAF tractograms generated using recent test- retest data from our institution are carefully characterised and measures of consistency using streamline-, voxel- and surface-wise comparisons calculated to inform researchers and serve as a benchmark for future methodological developments.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3