Scelestial: fast and accurate single-cell lineage tree inference based on a Steiner tree approximation algorithm

Author:

Foroughmand-Araabi M.-H.,Goliaei S.,McHardy A. C.

Abstract

AbstractSingle-cell genome sequencing provides a highly granular view of biological systems but is affected by high error rates, allelic amplification bias, and uneven genome coverage. This creates a need for data-specific computational methods, for purposes such as for cell lineage tree inference. The objective of cell lineage tree reconstruction is to infer the evolutionary process that generated a set of observed cell genomes. Lineage trees may enable a better understanding of tumor formation and growth, as well as of organ development for healthy body cells. We describe a method, Scelestial, for lineage tree reconstruction from single-cell data, which is based on an approximation algorithm for the Steiner tree problem and is a generalization of the neighbor-joining method. We adapt the algorithm to efficiently select a limited subset of potential sequences as internal nodes, in the presence of missing values, and to minimize cost by lineage tree-based missing value imputation. In a comparison against seven state-of-the-art single-cell lineage tree reconstruction algorithms - BitPhylogeny, OncoNEM, SCITE, SiFit, SASC, SCIPhI, and SiCloneFit - on simulated and real single-cell tumor samples, Scelestial performed best at reconstructing trees in terms of accuracy and run time. Scelestial has been implemented in C++. It is also available as an R package named RScelestial.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3