Abstract
AbstractExtracellular vesicles (EVs) that are thought to mediate the transport of proteins and RNAs involved in intercellular communication. Here, we show dynamic changes in the buoyant density and abundance of extracellular vesicles that are secreted by PC12 cells stimulated with nerve growth factor (NGF), N2A cells treated with retinoic acid to induce neural differentiation and mESCs differentiated into neuronal cells. EVs secreted from in vitro differentiated cells promote neural induction of mouse embryonic stem cells (mESCs). Cyclin D1 enriched within the EVs derived from differentiated neuronal cells contributes to this induction. EVs purified from cells overexpressing cyclin D1 are more potent in neural induction of mESC cells. Depletion of cyclin D1 from the EVs reduced the neural induction effect. Our results suggest that extracellular vesicles regulate neural development through sorting of cyclin D1.SummaryExtracellular vesicles (EVs) may mediate intercellular communication through the transfer of cargo molecules. Here, we report that cyclinD1 is sorted into EVs during neuronal differentiation and that these EVs help to promote the neural induction of mouse embryonic stem cells.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献