An interplay between cellular growth and atypical fusion defines morphogenesis of a modular glial niche

Author:

Rujano Maria Alexandra,Briand David,Ðelić Bojana,Spéder PaulineORCID

Abstract

AbstractNeural stem cells (NSCs) are embedded in a multi-layered, intricate cellular microenvironment supporting their activity, the niche. Whilst shape and function are inseparable, the morphogenetic aspects of niche development are poorly understood. Here, we use the formation of the glial network of a NSC niche to investigate acquisition of architectural complexity. Cortex glia (CG) in Drosophila regulate neurogenesis and build a reticular structure around NSCs. We first show that individual CG cells grow tremendously to ensheath several NSC lineages, eventually spanning the entire tissue while partitioning the NSC population. Elaborate proliferative mechanisms convert these cells into syncytia rich in cytoplasmic bridges. Unexpectedly, CG syncytia further undergo homotypic cell-cell fusion, relying on defined molecular players of cell fusion such as cell surface receptors and actin regulators. Exchange of cellular components is however dynamic in space and time, a previously unreported unique mechanism. This atypical cell fusion remodels cellular borders, restructuring the CG syncytia. Ultimately, the coordination of growth and fusion builds the multi-level architecture of the niche, and creates a modular, spatial partition of the NSC population. Our findings provide novel insights into how a niche forms and organises while developing intimate contacts with a stem cell population.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3