Author:
Biechele Gloria,Blume Tanja,Deussing Maximilian,Zott Benedikt,Shi Yuan,Xiang Xianyuan,Franzmeier Nicolai,Kleinberger Gernot,Peters Finn,Ochs Katharina,Focke Carola,Sacher Christian,Wind Karin,Schmidt Claudio,Lindner Simon,Gildehaus Franz-Josef,Eckenweber Florian,Beyer Leonie,von Ungern-Sternberg Barbara,Bartenstein Peter,Baumann Karlheinz,Dorostkar Mario M.,Rominger Axel,Cumming Paul,Willem Michael,Adelsberger Helmuth,Herms Jochen,Brendel Matthias
Abstract
AbstractModulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer’s disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and β-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R=−0.874, p<0.0001) but not in vehicle controls (R=−0.356, p=0.081). Reduced TSPO-PET signal upon treatment was associated with better spatial learning and higher fibrillar β-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R=0.952, p<0.0001). TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Pre-therapeutic assessment of baseline microglial activation and sex are strong predictors of individual immunomodulation effects and could serve for responder stratification.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献