Identification of Pex34p as a component of the peroxisomal de novo biogenesis machinery in yeast

Author:

Radke Juliane,Nagotu Shirisha,Girzalsky Wolfgang,Chakraborty Anirban,Deckers Markus,Schuldiner Maya,Zalckvar Einat,Erdmann RalfORCID

Abstract

SummaryCells can regulate the abundance and composition of peroxisomes to adapt to environmental changes. In the baker’s yeast, S. cerevisiae, peroxisomes represent the only site for degradation of fatty acids. Hence, it is not surprising that growth of yeast cells on oleic acid results in a massive proliferation of peroxisomes. New peroxisomes can form either by division of pre-existing peroxisomes or de novo in a Pex25p-dependent process with the involvement of the Endoplasmic Reticulum (ER). In search for further factors involved in de novo formation of peroxisomes, we screened ~6,000 yeast mutants that were depleted of peroxisomes by conditional inhibition of PEX19 expression. Screening the mutants for the reappearance of peroxisomes upon expression of PEX19 identified Pex34p, in addition to the well-known component Pex25p, as crucial determinants for de novo biogenesis. Pex34p interacts with Pex19p and with different Peroxisomal Membrane Proteins (PMPs) in a PEX19-dependent manner. Depletion of Pex34p results in reduced numbers of import-competent peroxisomes formed de novo and Pex3p is partly retained and distributed in ER-like structures. We suggest that Pex25p and Pex34p are both required to maintain peroxisome number in a cell and that they perform non-redundant roles in the de novo formation of peroxisomes.

Publisher

Cold Spring Harbor Laboratory

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3