Asynchronous glutamate exocytosis is enhanced in low release probability synapses and is widely dispersed across the active zone

Author:

Mendonça Philipe R. F.ORCID,Tagliatti EricaORCID,Langley HelenORCID,Kotzadimitriou DimitriosORCID,Zamora-Chimal Criseida G.ORCID,Timofeeva YuliaORCID,Volynski Kirill E.ORCID

Abstract

AbstractThe balance between fast synchronous and delayed asynchronous release of neurotransmitters has a major role in defining computational properties of neuronal synapses and regulation of neuronal network activity. However, how it is tuned at the single synapse level remains poorly understood. Here, using the fluorescent glutamate sensor SF-iGluSnFR, we image quantal vesicular release in tens to hundreds of individual synaptic outputs (presynaptic boutons) from single pyramidal cells in culture with 4 millisecond temporal resolution, and localise vesicular release sites with ~ 75 nm spatial resolution. We find that the ratio between synchronous and asynchronous synaptic vesicle exocytosis varies extensively among presynaptic boutons supplied by the same axon, and that asynchronous release fraction is elevated in parallel with short-term facilitation at synapses with low release probability. We further demonstrate that asynchronous exocytosis sites are more widely distributed within the presynaptic release area than synchronous sites. These findings are consistent with a model in which functional presynaptic properties are regulated via a synapsespecific adjustment of the coupling distance between presynaptic Ca2+ channels and releaseready synaptic vesicles. Together our results reveal a universal relationship between the two major functional properties of synapses – the timing and the overall probability of neurotransmitter release.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3