Abstract
ABSTRACTMutations and aberrant gene expression during cellular differentiation lead to neurodevelopmental disorders such as Prader-Willi syndrome (PWS) which results from the deletion of an imprinted locus on chromosome 15. We analysed chromatin-associated RNA in human induced pluripotent cells (iPSCs) upon depletion of hybrid small nucleolar long non-coding RNAs (sno-lncRNAs) and 5’ snoRNA capped and polyadenylated long non-coding RNAs (SPA-lncRNAs) transcribed from the locus deleted in PWS. We found that rapid ablation of these lncRNAs affects transcription of specific gene classes. Downregulated genes contribute to neurodevelopment and neuronal maintenance while genes that are upregulated are predominantly involved in the negative regulation of cellular metabolism and apoptotic processes. Our data revealed the importance of SPA-lncRNAs and sno-lncRNAs in controlling gene expression in iPSCs and provided a platform for synthetic experimental approaches in PWS studies. We conclude that ncRNAs transcribed from the PWS locus are critical regulators of a transcriptional signature important for neuronal differentiation and development.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献