Molecular competition can shape enhancer activity in the Drosophila embryo

Author:

Waymack RachelORCID,Gad Mario,Wunderlich ZebaORCID

Abstract

SummaryTransgenic reporters allow the measurement of regulatory DNA activity in vivo and consequently have long been useful tools in the study of enhancers. Despite the utility of transgenic reporters, few studies have investigated the potential effects these reporters have on the expression of other transgenic reporters or endogenous genes. A full understanding of the impacts transgenic reporters have on expression is required for accurate interpretation of transgenic reporter data and characterization of gene regulatory mechanisms. Here, we investigate the impact transgenic reporters have on the expression of other transgenic reporters and endogenous genes. By measuring the expression of Kruppel (Kr) enhancer reporters in live Drosophila embryos that contain either one or two copies of identical reporters, we find reporters have an inhibitory effect on one another’s expression. Further, expression of a nearby endogenous gene is decreased in the presence of a Kr enhancer reporter. Through the use of competitor binding site arrays, we present evidence that reporters, and potentially endogenous genes, are competing for transcription factors (TFs). Increasing the number of competitor Bcd binding sites decreases the peak levels and spatial extent of Bcd-regulated enhancer reporters’ expression. To understand how small numbers of added TF binding sites could impact gene expression to the extent we observe, we develop a simple thermodynamic model of our system. Our model predicts competition of the measured magnitude specifically if TF binding is restricted to distinct nuclear subregions, underlining the importance of the non-homogenous nature of the nucleus in regulating gene expression.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3