NMR solution structure and analysis of isolated S3b-S4a motif of repeat IV of the human cardiac sodium channel

Author:

Hussein Adel K.ORCID,Bhuiyan Mohammed H.,Arshava Boris,Zhuang JianqinORCID,Poget Sébastien F.ORCID

Abstract

ABSTRACTVoltage-gated sodium channels are membrane proteins that play an important role in the propagation of electrical signals by mediating the rising phase of an action potential. Numerous diseases, including epilepsy, extreme pain, and certain cardiac arrhythmias have been linked to defects in these channels. The S3b-S4a helix-turn-helix motif (paddle motif) is a region of the channel that is involved in voltage sensing and undergoes significant structural changes during gating. It is also the binding site for many gating-modifier toxins. We determined the solution structure of the paddle motif from the fourth repeat of NaV1.5 in dodecylphosphocholine micelles by NMR spectroscopy and investigated its dynamics and micelle interactions. The structure displays a helix hairpin with a short connecting loop, and likely represents the activated conformation with three of the first four gating charges facing away from S3. Furthermore, paramagnetic relaxation measurements show that the paddle motif is mainly interacting with the interface region of the micelle. NMR relaxation studies reveal that the paddle motif is mostly rigid, with some residues around the loop region and the last 4 residues on the C-terminus displaying heightened mobility. The structural findings reported here allowed the interpretation of three disease-causing mutations in this region of the human cardiac sodium channel, S1609W, F1617del and T1620M. The establishment of this model system for NMR studies of the paddle region offers a promising platform for future toxin interaction studies in the cardiac sodium channels, and similar approaches may be applied to other sodium channel isoforms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3