Vascular tropism models of blood-borne microbial dissemination

Author:

Boczula Anna E.,Ly Amy,Ebady Rhodaba,Cho Janet,Anjum Zoha,Zlotnikov Nataliya,Persson Henrik,Odisho Tanya,Simmons Craig A.ORCID,Moriarty Tara J.ORCID

Abstract

SUMMARYSimilar to circulating tumour and immune cells, many blood-borne microbes preferentially “home” to specific vascular sites and tissues during hematogenous dissemination 1–5. For many pathogens, the “postal codes” and mechanisms responsible for tissue-specific vascular tropism are unknown and have been challenging to unravel. Members of the Lyme disease Borreliella burgdorferi species complex infect a broad range of mammalian tissues and exhibit complex strain-, species- and host-specific tissue tropism patterns. Intravenous perfusion experiments and intravital microscopy studies suggest that heterogeneous tissue tropism properties may depend on tissue-specific differences in host and microbial molecules supporting vascular interaction and extravasation. However, interpreting these studies can be complicated because of the immune-protective moonlighting (multitasking) properties of many B. burgdorferi adhesins. Here, we investigated whether B. burgdorferi vascular interaction properties measured by live cell imaging and particle tracking in aorta, bladder, brain, joint and skin microvascular flow chamber models predict strain- and tissue-specific dissemination patterns in vivo These studies identified strain- and endothelial cell type-specific interaction properties that accurately predicted in vivo dissemination of B. burgdorferi to bladder, brain, joint and skin but not aorta, and indicated that dissemination mechanisms in all of these tissues are distinct. Thus, the ability to interact with vascular surfaces under physiological shear stress is a key determinant of tissue-specific tropism for Lyme disease bacteria. The methods and model systems reported here will be invaluable for identifying and characterizing the diverse, largely undefined molecules and mechanisms supporting dissemination of Lyme disease bacteria. These methods and models may be useful for studying tissue tropism and vascular dissemination mechanisms of other blood-borne microbes.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. Neutrophil Recruitment: From Model Systems to Tissue-Specific Patterns

2. A metastasis map of human cancer cell lines;Nature,2020

3. Strain-specific joint invasion and colonization by Lyme disease spirochetes is promoted by outer surface protein C;PLoS Pathog.,2020

4. Cardiotropic isolates of Listeria monocytogenes with enhanced vertical transmission dependent upon the bacterial surface protein InlB;Infect Immun,2021

5. Bioengineered 3D microvessels for investigating Plasmodium falciparum pathogenesis;Trends Parasitol,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3