Effect of charge on protein preferred orientation at the air–water interface in cryo-electron microscopy

Author:

Li BufanORCID,Zhu DongjieORCID,Shi HuigangORCID,Zhang XinzhengORCID

Abstract

AbstractThe air–water interface (AWI) tends to absorb proteins and frequently causes preferred orientation problems in cryo-electron microscopy (cryo-EM). Here, we examined cryo-EM data from protein samples frozen with different detergents and found that both anionic and cationic detergents promoted binding of proteins to the AWI. By contrast, nonionic and zwitterionic detergents tended to prevent proteins from attaching to the AWI. This ability was positively associated with the critical micelle concentration of the detergent. The protein orientation distributions with different anionic detergents were similar and resembled that obtained without detergent. By contrast, cationic detergents gave distinct orientation distributions. The AWI is negatively charged and the absorption of cationic detergents to the AWI alters its charge. Our results indicates that proteins absorb to charged interface and the negative charge of the AWI plays an important role in absorbing proteins in the conventional cryo-EM sample preparation. According to these findings, a new method was developed to modify the charge distribution of the AWI by adding a very low concentration of anionic detergent. Using this method, the protein particles exhibited a more evenly distributed orientations and still absorbed to the AWI enabling them embedding in a thin layer of ice, which will benefit the cryo-EM structural determination.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CryoEM Workflow Acceleration with Feret Signatures;International Journal of Molecular Sciences;2024-07-11

2. OUP accepted manuscript;Microscopy;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3