Predictive uncertainty in mechanistic models of cellular processes calibrated to experimental data

Author:

Irvin Michael W.,Ramanathan Arvind,Lopez Carlos F.ORCID

Abstract

AbstractMathematical models are often used to explore network-driven cellular processes from a systems perspective. However, a dearth of quantitative data suitable for model calibration leads to models with parameter unidentifiability and questionable predictive power. Here we introduce a Bayesian and Machine-Learning based Measurement Model approach to explore how quantitative and non-quantitative data constrain models of apoptosis execution within a missing data context. We find two orders of magnitude more ordinal (e.g. immunoblot) data are necessary to achieve accuracy comparable to quantitative (e.g. fluorescence) data. Notably, ordinal and nominal (e.g. immunostain) non-quantitative data synergize to reduce model uncertainty and improve accuracy. Further, model prediction accuracy and certainty strongly depend on rigorous data-driven formulations of the measurement, and the size and make-up of the datasets. Finally, we demonstrate the potential of a data-driven Measurement Model approach to identify model features that could lead to informative experimental measurements and improve model predictive power.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3