Scale-dependent tipping points of bacterial colonization resistance

Author:

Karita YuyaORCID,Limmer David T.ORCID,Hallatschek OskarORCID

Abstract

ABSTRACTBacteria are efficient colonizers of a wide range of secluded micro-habitats, such as soil pores, skin follicles, or intestinal crypts. How the structural diversity of these habitats modulates microbial self-organization remains poorly understood, in part because of the challenge to specifically manipulate the physical structure of microbial environments. Using a microfluidic device to grow bacteria in crypt-like incubation chambers of systematically varied lengths, we show that small variations in the physical structure of the micro-habitat can drastically alter bacterial colonization success and resistance against invaders. Small crypts are un-colonizable, intermediately sized crypts can stably support dilute populations, while beyond a second critical lengthscale, populations phase-separate into a dilute and a jammed region. The jammed state is characterized by extreme colonization resistance, even if the resident strain is suppressed by an antibiotic. Combined with a flexible biophysical model, we demonstrate that colonization resistance and associated priority effects can be explained by a crowding-induced phase transition, which results from a competition between proliferation and density-dependent cell leakage. The emerging sensitivity to scale underscores the need to control for scale in microbial ecology experiments. Systematic flow-adjustable lengthscale variations may serve as a promising strategy to elucidate further scale-sensitive tipping points and to rationally modulate the stability and resilience of microbial colonizers.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3