Predicting the presence and abundance of bacterial taxa in environmental communities through flow cytometric fingerprinting

Author:

Heyse JasmineORCID,Schattenberg Florian,Rubbens PeterORCID,Müller Susann,Waegeman Willem,Boon NicoORCID,Props Ruben

Abstract

AbstractMicrobiome management research and applications rely on temporally-resolved measurements of community composition. Current technologies to assess community composition either make use of cultivation or sequencing of genomic material, which can become time consuming and/or laborious in case high-throughput measurements are required. Here, using data from a shrimp hatchery as an economically relevant case study, we combined 16S rRNA gene amplicon sequencing and flow cytometry data to develop a computational workflow that allows the prediction of taxon abundances based on flow cytometry measurements. The first stage of our pipeline consists of a classifier to predict the presence or absence of the taxon of interest, with yields an average accuracy of 88.13±4.78 % across the top 50 OTUs of our dataset. In the second stage, this classifier was combined with a regression model to predict the relative abundances of the taxon of interest, which yields an average R2 of 0.35±0.24 across the top 50 OTUs of our dataset. Application of the models on flow cytometry time series data showed that the generated models can predict the temporal dynamics of a large fraction of the investigated taxa. Using cell-sorting we validated that the model correctly associates taxa to regions in the cytometric fingerprint where they are detected using 16S rRNA gene amplicon sequencing. Finally, we applied the approach of our pipeline on two other datasets of microbial ecosystems. This pipeline represents an addition to the expanding toolbox for flow cytometry-based monitoring of bacterial communities and complements the current plating- and marker gene-based methods.ImportanceMonitoring of microbial community composition is crucial for both microbiome management research and applications. Existing technologies, such as plating and amplicon sequencing, can become laborious and expensive when high-throughput measurements are required. Over the recent years, flow cytometry-based measurements of community diversity have been shown to correlate well to those derived from 16S rRNA gene amplicon sequencing in several aquatic ecosystems, suggesting there is a link between the taxonomic community composition and phenotypic properties as derived through flow cytometry. Here, we further integrated 16S rRNA gene amplicon sequencing and flow cytometry survey data in order to construct models that enable the prediction of both the presence and the abundance of individual bacterial taxa in mixed communities using flow cytometric fingerprinting. The developed pipeline holds great potential to be integrated in routine monitoring schemes and early warning systems for biotechnological applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3