Drug Repositioning by Merging Active Subnetworks Validated in Cancer and COVID-19

Author:

Lucchetta M.,Pellegrini M.

Abstract

AbstractComputational Drug Repositioning aims at ranking and selecting existing drugs for use in novel diseases or existing diseases for which these drugs were not originally designed. Using vast amounts of available omic data in digital form within an in silico screening has the potential for speeding up considerably the shortlisting of promising candidates in response to outbreaks of diseases such as COVID-19 for which no satisfactory cure has yet been found. We describe DrugMerge as a methodology for preclinical computational drug repositioning based on merging multiple drug rankings obtained with an ensemble of Disease Active Subnetwork construction algorithms. DrugMerge uses differential transcriptomic data from cell lines/tissues of patients affected by the disease and differential transcriptomic data from drug perturbation assays, in the context of a large gene co-expression network. Experiments with four benchmark diseases (Asthma, Rheumatoid Arthritis, Prostate Cancer, and Colorectal Cancer) demonstrate that our method detects in first position drugs in clinical use for the specified disease, in all four cases. Our method is competitive with the state-of-the-art tools such as CMAP (Connectivity Map). Application of DrugMerge to COVID-19 data found rankings with many drugs currently in clinical trials for COVID-19 in top positions, thus showing that DrugMerge is able to mimic human expert judgment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3