Abstract
AbstractReaction-diffusion models have been widely used to elucidate pattern formation in developmental biology. More recently, they have also been applied in modeling cell fate patterning that mimic early-stage human development events utilizing geometrically confined pluripotent stem cells. However, the traditional reaction-diffusion equations could not satisfactorily explain the concentric ring distributions of various cell types, as they do not yield circular patterns even for circular domains. In previous mathematical models that yield ring patterns, certain conditions that lack biophysical understandings had been considered in the reaction-diffusion models. Here we hypothesize that the circular patterns are the results of the coupling of the mechanobiological factors with the traditional reaction-diffusion model. We propose two types of coupling scenarios: tissue tension-dependent diffusion flux and traction stress-dependent activation of signaling molecules. By coupling reaction-diffusion equations with the elasticity equations, we demonstrate computationally that the contraction-reaction-diffusion model can naturally yield the circular patterns.
Publisher
Cold Spring Harbor Laboratory