Controlled bio-inspired self-organised criticality

Author:

olde Scheper Tjeerd V.ORCID

Abstract

AbstractThe control of extensive complex biological systems is considered to depend on feedback mechanisms. Reduced systems modelling has been effective to describe these mechanisms, but this approach does not sufficiently encompass the required complexity that is needed to understand how localised control in a biological system can provide global stable states. Self-Organised Criticality (SOC) is a characteristic property of locally interacting physical systems which readily emerges from changes to its dynamic state due to small nonlinear perturbations. Small changes in the local states, or in local interactions, can greatly affect the total system state of critical systems. It has long been conjectured that SOC is cardinal to biological systems that show similar critical dynamics and also may exhibit near power-law relations. Rate Control of Chaos (RCC) provides a suitable robust mechanism to generate SOC systems which operates at the edge of chaos. The bio-inspired RCC method requires only local instantaneous knowledge of some of the variables of the system, and is capable of adapting to local perturbations. Importantly, connected RCC controlled oscillators can maintain global multi-stable states, and domains with power-law relations may emerge. The network of oscillators deterministically stabilises into different orbits for different perturbations and the relation between the perturbation and amplitude can show exponential and power-law correlations. This is representative of a basic mechanism of protein production and control, that underlies complex processes such as homeostasis. Providing feedback from the global state, the total system dynamic behaviour can be boosted or reduced. Controlled SOC can provide much greater understanding of biological control mechanisms, that are based on distributed local producers, remote consumers of biological resources, with globally defined control.Author summaryUsing a nonlinear control method inspired by enzymatic control, which is capable of stabilising chaotic systems into periodic orbits or steady-states, it is shown that a controlled system can be created that is scale-free and in a critical state. This means that the system can easily move from one stable orbit to another using only a small local perturbation. Such a system is known as self-organised criticality, and is shown in this system to be deterministic. Using a known perturbation, it will result in a scale-free response of the system that can be in a power law relation. It has been conjectured that biosystems are in a self-organised critical state, and these models show that this is a suitable approach to allow local systems to control a global state, such as homeostatic control. The underlying principle is based on rate control of chaos, and can be used to understand how biosystems can use localised control to ensure stability at different dynamic scales without supervising mechanisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3