Multiomic Characterization of Stage I Lung Adenocarcinoma Reveals Distinct Genetic and Immunologic Features of Recurrent Disease

Author:

Kratz Johannes R.ORCID,Li Jack Z.ORCID,Tsui Jessica,Lee Jen C.,Ding Vivianne W.,Rao Arjun A.ORCID,Mann Michael J.,Chan Vincent,Combes Alexis J.ORCID,Krummel Matthew F.ORCID,Jablons David M.

Abstract

AbstractBackgroundRecurrence after surgery for early-stage lung cancer is common, occurring between 30-50% of the time. Despite the popularization of prognostic gene signatures in early-stage lung cancer that allow us to better predict which patients may recur, why patients recur after surgery remains unclear.MethodsUsing a large cohort of lung adenocarcinoma patients with complete genetic, genomic, epigenetic and clinical profiling, a recurrence classifier was developed which identifies patients at highest risk of recurrence. The genetic, genomic, and epigenetic profiles of stage I patients with low-vs. high-risk of recurrence were compared. To characterize the tumor immune microenvironment of recurrent stage I tumors, single cell RNA-seq was performed on fresh tissue samples undergoing lung adenocarcinoma resection at UCSF to identify unique immune population markers and applied to the large stage I lung adenocarcinoma cohort using digital cytometry.ResultsRecurrence high-risk stage I lung adenocarcinomas demonstrated a higher mutation burden than low-risk tumors, however, none of the known canonical lung cancer driver mutations were more prevalent in high-risk tumors. Transcriptomic analysis revealed widespread activation of known cancer and cell cycle pathways with simultaneous downregulation of immune response pathways including antigen presentation and Th1/Th2 activation. Tumors at high-risk of recurrence displayed depleted adaptive immune populations, and depletion of adaptive immune populations was independently prognostic of recurrence in stage I lung adenocarcinomas.ConclusionRecurrent stage I lung adenocarcinomas display distinct features of genomic and genetic instability including increased tumor mutation burden, neoantigen load, activation of numerous mitotic and cell cycle genes, and decreased genome-wide methylation burden. Relative depletion of infiltrating adaptive immune populations may allow these tumors to escape immunosurveillance and recur after surgery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3