Vascular epiphytes contribute disproportionately to global centres of plant diversity

Author:

Taylor AmandaORCID,Zotz GerhardORCID,Weigelt PatrickORCID,Cai LirongORCID,Karger Dirk NikolausORCID,König ChristianORCID,Kreft HolgerORCID

Abstract

AbstractAimVascular epiphytes are ubiquitous features of wet tropical forests where they contribute substantially to local and regional plant diversity. While some basic epiphyte distribution patterns are relatively well studied, little effort has been made to understand the drivers responsible for constraining their global distribution. This study quantifies the substantial contribution of epiphytes to global gradients and centres of vascular plant diversity and explores whether epiphytes vary from terrestrial plants in relation to contemporary and historical environmental variables.LocationGlobal.Time periodPresent.Major taxa studiedVascular epiphytes.MethodsWe integrated EpiList 1.0, a comprehensive list comprising > 30,000 vascular epiphyte species, and species distributions derived from the GIFT database to describe the global biogeography of epiphytes. We used generalized linear mixed effects models to assess the relationship between epiphytic and terrestrial plant diversity, and contemporary and historical environmental predictors.ResultsWe find that epiphytes substantially contribute to global centres of vascular plant diversity, accounting for up to 39% of the vascular flora in the Neotropics. Epiphytes decrease in species numbers with increasing latitude at a rate three times faster than terrestrial plants, a trend that is driven mainly by the distribution of tropical forests and precipitation. Further, large regional differences emerge that are explained by several large endemic angiosperm families (e.g., Neotropical Bromeliaceae) that are absent in other tropical regions.Main conclusionsOur results show that epiphytes are disproportionately diverse in most global centres of plant diversity and play an important role in driving the global latitudinal diversity gradient for plants. The distribution of precipitation and tropical forests emerge as major drivers of the latitudinal diversity gradient in epiphyte species richness. Finally, our findings demonstrate how epiphyte floras in different biogeographical realms are composed of different families and higher taxa revealing an important signature of historical biogeography.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3