Temporal Progression: A case study in Porcine Survivability through Hemostatic Nanoparticles

Author:

Kulkarni Chhaya,Maisha NuzhatORCID,Schaub Leasha J,Glaser JacobORCID,Lavik ErinORCID,Janeja Vandana P.ORCID

Abstract

ABSTRACTThis paper focuses on the analysis of time series representation of blood loss and cytokines in animals experiencing trauma to understand the temporal progression of factors affecting survivability of the animal. Trauma related grave injuries cause exsanguination and lead to death. 50% of deaths especially in the armed forces are due to trauma injuries. Restricting blood loss usually requires the presence of first responders, which is not feasible in certain cases. Hemostatic nanoparticles have been developed to tackle these kinds of situations to help achieve efficient blood coagulation. Hemostatic nanoparticles were administered into trauma induced porcine animals (pigs) to observe impact on the cytokine and blood loss experienced by them. In this paper we present temporal models to study the impact of the hemostatic nanoparticles and provide snapshots about the trend in cytokines and blood loss in the porcine data to study their progression over time. We utilized Piecewise Aggregate Approximation, Similarity based Merging and clustering to evaluate the impact of the different hemostatic nanoparticles administered. In some cases the fluctuations in the cytokines may be too small. So in addition we highlight situations where temporal modelling that produces a smoothed time series may not be useful as it may remove out the noise and miss the overall fluctuations resulting from the nanoparticles. Our results indicate certain nanoparticles stand out and lead to novel hypothesis formation.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

1. The global burden of injuries

2. Epidemiology of trauma deaths: a reassessment;Journal of Trauma and Acute Care Surgery,1995

3. A profile of combat injury;Journal of Trauma and Acute Care Surgery,2003

4. Prehospital care, importance of early intervention on outcome;Acta Anaesthesiologica Scandinavica,1997

5. Steroid-loaded hemostatic nanoparticles combat lung injury after blast trauma;ACS macro letters,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3