Considerations for using reproduction data in toxicokinetic-toxicodynamic modelling

Author:

Jager TjallingORCID,Trijau Marie,Sherborne NeilORCID,Goussen BenoitORCID,Ashauer RomanORCID

Abstract

ABSTRACTToxicokinetic-toxicodynamic (TKTD) modelling is essential to make sense of the time dependence of toxic effects, and to interpret and predict consequences of time-varying exposure. These advantages have been recognised in the regulatory arena, especially for environmental risk assessment (ERA) of pesticides, where time-varying exposure is the norm. We critically evaluate the link between the modelled variables in TKTD models and the observations from laboratory ecotoxicity tests. For the endpoint reproduction, this link is far from trivial. The relevant TKTD models for sub-lethal effects are based on Dynamic-Energy Budget (DEB) theory, which specifies a continuous investment flux into reproduction. In contrast, experimental tests score egg or offspring release by the mother. The link between model and data is particularly troublesome when a species reproduces in discrete clutches, and even more so when eggs are incubated in the mother’s brood pouch (and release of neonates is scored in the test). This situation is quite common among aquatic invertebrates (e.g., cladocerans, amphipods, mysids), including many popular test species. We discuss these and other issues with reproduction data, reflect on their potential impact on DEB-TKTD analysis, and provide preliminary recommendations to correct them. Both modellers and users of model results need to be aware of these complications, as ignoring them could easily lead to unnecessary failure of DEB-TKTD models during calibration, or when validating them against independent data for other exposure scenarios.

Publisher

Cold Spring Harbor Laboratory

Reference19 articles.

1. Advantages of toxicokinetic and toxicodynamic modelling in aquatic ecotoxicology and risk assessment;J Environ Monit,2010

2. A method to predict and understand fish survival under dynamic chemical stress using standard ecotoxicity data;Environmental Toxicology and Chemistry,2013

3. Bayesian modelling of daphnid responses to time-varying cadmium exposure in laboratory aquatic microcosms

4. Statistical handling of reproduction data for exposure-response modeling;Environmental Science & Technology,2014

5. Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms;EFSA;EFSA journal,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3