Cooperativity of catalytic and lectin-like domain of T. congolense trans-sialidase modulates its catalytic activity

Author:

Waespy MarioORCID,Gbem Thaddeus T.ORCID,Kumar Nilima DineshORCID,Mani Shanmugam SolaiyappanORCID,Rosenau JanaORCID,Dietz Frank,Kelm Sørge

Abstract

AbstractTrans-sialidases (TS) represent a multi-gene family of unusual enzymes, which catalyse the transfer of terminal sialic acids from sialoglycoconjugates to terminal galactose or N-acetylgalactosamine residues of oligosaccharides without the requirement of CMP-Neu5Ac, the activated Sia used by typical sialyltransferases. Most work on trypanosomal TS has been done on enzymatic activities of TS from T. cruzi (causing Chagas disease in Latin America), subspecies of T. brucei, (causing human sleeping sickness in Africa) and T. congolense (causing African Animal Trypanosomosis in livestock). Previously, we demonstrated that T. congolense TS (TconTS) lectin domain (LD) binds to several carbohydrates, such as 1,4-β-mannotriose.To investigate the influence of TconTS-LD on enzyme activities, we firstly performed in silico analysis on structure models of TconTS enzymes. Findings strongly supports the potential of domain swaps between TconTS without structural disruptions of the enzymes overall topologies. Recombinant domain swapped TconTS1a/TS3 showed clear sialidase and sialic acid (Sia) transfer activities, when using fetuin and lactose as Sia donor and acceptor substrates, respectively. While Sia transfer activity remained unchanged from the level of TconTS1a, hydrolysis was drastically reduced. Presence of 1,4-β-mannotriose during TS reactions modulates enzyme activities favouring trans-sialylation over hydrolysis.In summary, this study provides strong evidence that TconTS-LDs play pivotal roles in modulating enzyme activity and biological functions of these and possibly other TS, revising our fundamental understanding of TS modulation and diversity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3