Capturing the songs of mice with an improved detection and classification method for ultrasonic vocalizations (BootSnap)

Author:

Abbasi ReyhanehORCID,Balazs PeterORCID,Marconi Maria AdelaideORCID,Nicolakis DorisORCID,Zala Sarah M.ORCID,Penn Dustin J.ORCID

Abstract

AbstractHouse mice communicate through ultrasonic vocalizations (USVs), which are above the range of human hearing (>20 kHz), and several automated methods have been developed for USV detection and classification. Here we evaluate their advantages and disadvantages in a full, systematic comparison. We compared the performance of four detection methods, DeepSqueak (DSQ), MUPET, USVSEG, and the Automatic Mouse Ultrasound Detector (A-MUD). Moreover, we compared these to human-based manual detection (considered as ground truth), and evaluated the inter-observer reliability. All four methods had comparable rates of detection failure, though A-MUD outperformed the others in terms of true positive rates for recordings with low or high signal-to-noise ratios. We also did a systematic comparison of existing classification algorithms, where we found the need to develop a new method for automating the classification of USVs using supervised classification, bootstrapping on Gammatone Spectrograms, and Convolutional Neural Networks algorithms with Snapshot ensemble learning (BootSnap). It successfully classified calls into 12 types, including a new class of false positives used for detection refinement. BootSnap provides enhanced performance compared to state-of-the-art tools, it has an improved generalizability, and it is freely available for scientific use.

Publisher

Cold Spring Harbor Laboratory

Reference83 articles.

1. Abbasi, R. , Balazs, P. , Noll, A. , Nicolakis, D. , Marconi, M. A. , Zala, S. M. , & Penn, D. J. (2019). Applying convolutional neural networks to the analysis of mouse ultrasonic vocalizations, DOI:https://doi.org/10.18154/RWTH-CONV-239263.

2. Evaluating the generalization ability of support vector machines through the bootstrap;Neural Processing Letters,2000

3. Balazs, P. , Holighaus, N. , Necciari, T. , & Stoeva, D. (2017). Frame theory for signal processing in psychoacoustics Excursions in Harmonic Analysis , Volume 5 (pp. 225–268): Springer, DOI:https://doi.org/10.1007/978-3-319-54711-4_10.

4. Balazs, P. , Noll, A. , Deutsch, W. A. , & Laback, B. (2000). Concept of the integrated signal analysis software system STx. Jahrestagung der Österreichischen Physikalischen Gesellschaft.

5. A study of the behavior of several methods for balancing machine learning training data;ACM SIGKDD explorations newsletter,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3