Data fusion for abundance estimation: community science augments systematically collected removal-in-time distance sampling data

Author:

Joseph Maxwell B.ORCID,Pavlacky David C.ORCID,Bartuszevige Anne M.ORCID

Abstract

AbstractEcologists use a variety of systematically and opportunistically sampled count data to estimate bird abundance, and integrating or fusing different datasets has emerged as a critical challenge in recent years. While previous work provides data integration methodology for occupancy (presence/absence) estimation, methods for abundance estimation that account for imperfect detection and disparate survey protocols remains an active area of research. Here we show how to integrate systematically collected removal-in-time distance sampling data from the Integrated Monitoring in Bird Conservation Regions (IMBCR) program with North American Breeding Bird Survey (BBS) point counts and eBird community science observations. Using the Grasshopper Sparrow (Ammodramus savannarum) in the Great Plains of the United States as a focal species, we demonstrate that BBS and eBird data improve predictive performance for IMBCR count data, providing more spatially refined and precise estimates of abundance at regional scales. Data fusion increased predictive performance even despite relatively weak spatial correlations among data sets. The methodology developed here provides a principled way to fuse data when estimating abundance with distance sampling, that accounts for imperfect detection and variable effort.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. A Hierarchical Model Combining Distance Sampling and Time Removal to Estimate Detection Probability During Avian Point Counts;The Auk: Ornithological Advances,2014

2. Babcock, K , C Baxter , S Brown , B Ford , R Johnson , J Leach , J McCauley , et al. 1998. “A Proposed Framework for Delineating Ecologically-Based Planning, Implementation, and Evaluation Units for Cooperative Bird Conservation in the United States. 23 Pages+ Appendices.”

3. On conditional and intrinsic autoregressions

4. A comparison of Bayesian spatial models for disease mapping

5. Buckland, Stephen T , David R Anderson , Kenneth Paul Burnham , Jeffrey Lee Laake , David Louis Borchers , Leonard Thomas , and others. 2001. “Introduction to Distance Sampling: Estimating Abundance of Biological Populations.”

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3