Syntrophic H2 production enhances the performance of primarily acetate-supplemented reactors treating sulphate contaminated solutions

Author:

Hessler TomasORCID,Harrison Susan T.L.ORCID,Banfield Jillian F.ORCID,Huddy Robert J.ORCID

Abstract

AbstractBiological sulfate reduction (BSR) represents a promising bioremediation strategy, yet the impact of metabolic interactions on performance has been largely unexplored. Here, genome-resolved metagenomics was used to characterise 17 microbial communities associated with reactors operated with defined sulfate-contaminated solutions. Pairs of reactors were supplemented with lactate or with acetate plus a small amount of fermentable substrate. At least thirty draft quality genomes, representing all the abundant bacteria, were recovered from each metagenome. All of the 22 SRB genomes encode genes for H2 consumption. And of the total 163 genomes recovered, 130 encode 321 NiFe and FeFe hydrogenases. The lactate-supplemented packed-bed bioreactor was particularly interesting as it resulted in stratified microbial communities that were distinct in their predominant metabolisms. Pathways for fermentation of lactate and hydrogen production were enriched towards the inlet whereas increased autotrophy and acetate-oxidizing SRB were evident towards the end of the flow path. We hypothesized that high sulfate removal towards the end of the flow path, despite acetate being an electron donor that typically sustains low SRB growth rates, was stimulated by H2 consumption. This hypothesis was supported by sustained performance of the predominantly acetate-supplemented stirred-tank reactor, which was dominated by diverse fermentative, hydrogen-evolving bacteria and low-abundance SRB capable of acetate and hydrogen consumption. We conclude that the performance of BSR reactors supplemented with inexpensive acetate can be improved by the addition of a low concentration of fermentable material due to stimulation of syntrophic relationships among hydrogen-producing non-SRB and dual hydrogen- and acetate-utilising SRB.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Binning metagenomic contigs by coverage and composition;Nature Methods,2014

2. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle;The ISME Journal,2018

3. Anaerobic citrate metabolism and its regulation in enterobacteria

4. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities

5. Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities;Frontiers in Microbiology,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3