Effective Computational Framework for Pre-Interventional Planning of Peripheral Arteriovenous Malformations with In Vivo and In Vitro Validation

Author:

Franzetti Gaia,Bonfanti MirkoORCID,Tanade Cyrus,Lim Chung Sim,Tsui Janice,Hamilton George,Díaz-Zuccarini Vanessa,Balabani Stavroula

Abstract

AbstractPurposePeripheral arteriovenous malformations (pAVMs) are congenital lesions characterised by abnormal high-flow, low-resistance vascular connections – constituting the so-called nidus – between arteries and veins. The mainstay treatment typically involves the embolisation of the nidus with embolic and sclerosant agents, however the complexity of AVMs often leads to uncertain outcomes. This study aims at developing a simple, yet effective computational framework to aid the clinical decision making around the treatment of pAVMs.MethodsA computational model was developed to simulate the pre-, intra-, and post-intervention haemodynamics of an AVM. A porous medium of varying permeability was used to simulate the effect that the sclerosant has on the blood flow through the nidus. The computational model was informed by computed tomography (CT) scans and digital subtraction angiography (DSA) images, and the results were compared against clinical data and experimental results.ResultsThe computational model was able to simulate the blood flow through the AVM throughout the intervention and predict (direct and indirect) haemodynamic changes due to the embolisation. The simulated transport of the dye in the AVM was compared against DSA time-series obtained at different intervention stages, providing confidence in the results. Moreover, experimental data obtained via a mock circulatory system involving a patient specific 3D printed phantom of the same AVM provided further validation of the simulation results.ConclusionWe developed a simple computational framework to simulate AVM haemodynamics and predict the effects of the embolisation procedure. The developed model lays the foundation of a new, computationally driven treatment planning tool for AVM embolisation procedures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3