Abstract
AbstractThree-component ParABS systems are widely distributed factors for plasmid partitioning and chromosome segregation in bacteria. ParB protein acts as an adaptor between the 16 bp centromeric parS DNA sequences and the DNA segregation ATPase ParA. It accumulates at high concentrations at and near a parS site by assembling a partition complex. ParB dimers form a DNA sliding clamp whose closure at parS requires CTP binding. The mechanism underlying ParB loading and the role of CTP hydrolysis however remain unclear. We show that CTP hydrolysis is dispensable for Smc recruitment to parS sites in Bacillus subtilis but is essential for chromosome segregation by ParABS in the absence of Smc. Our results suggest that CTP hydrolysis contributes to partition complex assembly via two mechanisms. It recycles off-target ParB clamps to allow for new attempts at parS targeting and it limits the extent of spreading from parS by promoting DNA unloading. We also propose a model for how parS DNA catalyzes ParB clamp closure involving a steric clash between ParB protomers binding to opposing parS half sites.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献