Signatures of genetic variation in human microRNAs point to processes of positive selection related to population-specific disease risks

Author:

Villegas-Mirón Pablo,Gallego Alicia,Bertranpetit Jaume,Laayouni Hafid,Espinosa-Parrilla Yolanda

Abstract

AbstractThe occurrence of natural variation in human microRNAs has been the focus of numerous studies during the last twenty years. Most of them have been dedicated to study the role of specific mutations in diseases, like cancer, while a minor fraction seek to analyse the diversity profiles of microRNAs in the genomes of human populations. In the present study we analyse the latest human microRNA annotations in the light of the most updated catalog of genetic variation provided by the 1000 Genomes Project. We show by means of the in silico analysis of noncoding variation of microRNAs that the level of evolutionary constraint of these sequences is governed by the interplay of different factors, like their evolutionary age or the genomic location where they emerged. The role of mutations in the shaping of microRNA-driven regulatory interactions is emphasized with the acknowledgement that, while the whole microRNA sequence is highly conserved, the seed region shows a pattern of higher genetic diversity that appears to be caused by the dramatic frequency shifts of a fraction of human microRNAs. We highlight the participation of these microRNAs in population-specific processes by identifying that not only the seed, but also the loop, are particularly differentiated regions among human populations. The quantitative computational comparison of signatures of population differentiation showed that candidate microRNAs with the largest differences are enriched in variants implicated in gene expression levels (eQTLs), selective sweeps and pathological processes. We explore the implication of these evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of cancer, and discuss their role in population-specific disease risk.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3