Viscoelasticity of basal plasma membranes and cortices derived from MDCK II cells

Author:

Janshoff AndreasORCID

Abstract

AbstractIn mature epithelial cells, however, cells adhere to one another through tight junctions, adherens junctions and desmosomes thereby displaying a pronounced apical-basal polarity. In vivo, the apical membrane has a larger surface area and faces the outer surface of the body or the lumen of internal cavities, whereas the basolateral membrane is oriented on the side away from the lumen and forms focal adhesions with the extracellular matrix. The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side of the cells due to their accessibility on culture dishes. Moreover, contributions from the cell interior comprising various filament types, organelles, and the crowded cytoplasm usually impede examination of the cortex alone. Here, we investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. Therefore, we grew MDCK II cells on porous surfaces to confluency and removed the upper cell body by sandwich cleavage. The free-standing, defoliated cortices were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared to the viscoelastic response of living cells the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken into account.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Viscoelastic properties of epithelial cells;Biochemical Society Transactions;2021-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3