Compensatory functional connectome changes in a rat model of traumatic brain injury

Author:

Yang Zhihui,Zhu Tian,Pompilus Marjory,Fu Yueqiang,Zhu Jiepei,Arjona Kefren,Arja Rawad Daniel,Grudny Matteo M.,Plant H. Daniel,Bose Prodip,Wang Kevin K.,Febo MarceloORCID

Abstract

AbstractPenetrating cortical impact injuries alter neuronal communication beyond the injury epicenter, across regions involved in affective, sensorimotor, and cognitive processing. Understanding how traumatic brain injury (TBI) reorganizes local and brain wide nodal functional interactions may provide valuable quantitative parameters for monitoring pathological progression and functional recovery. To this end, we investigated spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) signal obtained at 11.1 Tesla in rats sustaining controlled cortical impact (CCI) and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12,879 pairwise correlations between fMRI signals from 162 regions. Our data indicate that on days 2 and 30 post-CCI there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic, and basal forebrain areas. Rats imaged on day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality, and participation coefficient track early and late TBI effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to CCI may be unfavorable to brain wide communication in the early post-injury period.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3